| 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
 | /* Source:
 * http://en.literateprograms.org/Miller-Rabin_primality_test_%28C%29
 *
 */
#include <stdio.h>
#include <stdlib.h>
#define COMPOSITE 0
#define PRIME     1
unsigned short modular_exponent_16(unsigned short base, unsigned short power,
                                   unsigned short modulus)
{
    unsigned long result = 1;
    int i;
    for (i = 15; i >= 0; i--)
    {
        result = (result*result) % modulus;
        if (power & (1 << i))
            result = (result*base) % modulus;
    }
    return (unsigned short) result; /* will not truncate since modulus is a unsigned short */
}
int miller_rabin_pass_16(unsigned short a, unsigned short n)
{
    unsigned short a_to_power, s, d, i;
    s = 0;
    d = n - 1;
    while ((d % 2) == 0)
    {
        d /= 2;
        s++;
    }
    a_to_power = modular_exponent_16(a, d, n);
    if (a_to_power == 1)
        return PRIME;
    for (i = 0; i < s-1; i++)
    {
        if (a_to_power == n-1)
            return PRIME;
        a_to_power = modular_exponent_16(a_to_power, 2, n);
    }
    if (a_to_power == n-1)
        return PRIME;
    return COMPOSITE;
}
int miller_rabin_16(unsigned short n)
{
    if (n <= 1)
        return COMPOSITE;
    if (n == 2)
        return PRIME;
    if (miller_rabin_pass_16( 2, n) == PRIME &&
        (n <= 7  || miller_rabin_pass_16( 7, n) == PRIME) &&
        (n <= 61 || miller_rabin_pass_16(61, n) == PRIME))
        return PRIME;
    else
        return COMPOSITE;
}
 |